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BACK IN 1979....

This paper is a real treasure trove

I Monte Carlo algorithm
for SU(2)

I Operators - Creutz ratio

I Continuum limit and
renormalization group

I Results: string tension!



Back in 1979 Gradient flow Scale setting Step Scaling Conclusion

THE STRING TENSION (ON THE LAST PAGE)

”We have shown the onset of
asymptotic freedom for the bare
coupling constant in a
renormalization scheme based on
confinement.
This is strongly suggestive that
SU(2) non-Abelian gauge theory
simultaneously exhibits
confinement and asymptotic
freedom.”
On 104 volumes - what luck!
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THE STRING TENSION (ON THE LAST PAGE)

... where the renormalization scale
is

Λ ≈
√

Kexp
(
− 6π2

11
) =

1
200

√
K,

thus we see ... a rather large
dimensionless number.

Is that a problem?
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THE Λ PARAMETER

Already in 1979 it was known that
I The continuum ΛQCD depends weakly on the RG scheme

(MOM, MS, MS are within 10%)
I ΛQCD ∼

√
K (up to a factor of two or so

I
√

K/Λlatt ≈ 200 means
I either that QCD / SU(N) gauge group does not describe

strong interactions
I or that Λlatt is very different from Λcont

Lattice perturbation theory is strange!
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THE Λ PARAMETER

And so my Master’s thesis was born: calculate

Λlatt/ΛMOM

- Sometimes I even knew what I was doing
- I still have a deep appreciation for lattice PT
- It was all those tadpoles.....

ΛMOM
Feynman gauge = 57.5Λlattice for SU(2)

- an other factor of 3 is due to 2-loop corrections, and
everything works out
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LATTICE SCALES

I the string tension served for a while as the favored lattice
scale

I the Sommer parameter r0 and its variants took over and
are still in play

I fermionic scales (fπ, mΩ) became popular with reliable
dynamical simulations

I there is a new kid on the block : the gradient flow scale
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THE GRADIENT FLOW

The gradient flow is a controlled and reversible smoothing
transformation 1

Aµ(t)
dt

= −δSYM

δAµ

with smoothing range ≈
√

8t.
If
√

8t� a the UV fluctuations are removed
−→ renormalized quantities can be defined

1Luscher 2009
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THE GRADIENT FLOW COUPLING

Define a running coupling

g2
GF

(
µ =

1√
8t

)
=

1
N

t2〈E(t)〉, E(t) = −1
2

G2
µν

I easy to measure with small systematical errors
I can be combined with any boundary conditions
I appropriate both for scale setting and step scaling function
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SCALE SETTING WITH GRADIENT FLOW

Define a running coupling

g2
GF

(
µ =

1√
8t

)
=

1
N

t2〈E(t)〉, E(t) = −1
2

G2
µν

Fix g2
GF

(
µ = 1√

8tq

)
= g2

q : defines µ→ tlatt
q = tq/a2

Determine tq in physical units→ a can be calculated

t0 scale: : g2(t0) = 0.3/N

Different choices of g2
q should predict the same scale :

tq/t0 should be independent of the gauge coupling.
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SCALE SETTING WITH GRADIENT FLOW

g̃2
GF vs t/t0 should be independent of the lattice spacing 2

Example: HISQ action, ms/ml = 27, large volume simulations 3
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τ0 = 0.0
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A: a ≈ 0.15fm;
B: a ≈ 0.12fm;
C: a ≈ 0.09fm;
D: a ≈ 0.06fm;

2Baring cut-off effects and assuming t is large to avoid gradient flow
integration artifacts but small enough to minimize finite volume effects

3Thanks N. Brown for sharing the MILC gradient flow data
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THE GRADIENT FLOW COUPLING

Options to improve: 4

I w0 scale 5

I perturbative improvement (action+flow+operator)
I t-shift improved g̃2

GF(µ) : simple modification (1404.0984)
I designed for step scaling but works for scale setting
I easy to implement with one free parameter
I can remove most cut-off effects
I works at strong coupling

4Sommer 2013, Ramos 2014
5Borsanyi 2012
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T-SHIFT IMPROVED GRADIENT FLOW

Define the t-shifted coupling as

g̃2
GF
(
µ =

1√
8t
, a
)

=
1
N

t2〈E(t + a2τ0)〉, a2τ0 � t

In the continuum a→ 0 limit g̃2
GF(µ)→ g2

GF(µ)

Why would this help? Three ways of looking at it:
1. 〈E(t)〉 → 〈E(t + a2τ0)〉

replaces E(t) with a smeared operator
→ smearing tends to remove lattice artifacts

2. t + a2τ0 → t removes initial flow time artifacts
3. The shift can remove O(a2) terms
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T-SHIFT IMPROVED GRADIENT FLOW

Expand the t-shifted coupling

g̃2
GF
(
µ =

1√
8t
, a
)

=
1
N

t2〈E(t + a2τ0)〉, a2τ0 � t

in a2τ0

g̃2
GF(µ, a) = g2

GF(µ, a) + a2τ0
d
dt
(
t2〈E(t)〉

)
+ . . .

g2
GF(µ, a) = g2

GF(µ) + a2C + . . .

If C = −τ0
d
dt

(
t2〈E(t)〉

)
the O(a2) corrections are removed

g̃2
GF(µ, a) = g2

GF(µ) +O(a4, a2logn(a))
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T-SHIFT IMPROVED GRADIENT FLOW

It might even help at 1-loop level:

g̃2
GF(t, a) =

1
N

t2〈E(t + a2τ0)〉 = g2
GF
(
t + a2τ0

)(
1 +

a2τ0

t
)−2

(1 + a2τ0/t)−1 term gives tree-level corrections while

g2
GF(t+a2τ0) = g2

GF(t)+
a2τ0

t
t
dg2

GF
dt

+· · · = g2
GF(t)+

a2τ0

t
b0g4

GF(t)+. . .

gives 1-loop corrections. If
I the tree level corrections are small
I or removed analytically

the τ0 shift could give 1-loop improvement!
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T-SHIFT IMPROVED GRADIENT FLOW

g̃2
GF
(
µ =

1√
8t
, a
)

=
1
N

t2〈E(t + a2τ0)〉,

I Every τ0 value is correct - some are just better
I If the tree-level corrections are small, τ0 = const can give

1-loop improvement
I For full O(a2) improvement τopt must depend on both the

bare and renormalized couplings
→ might mean no predictive power

→ comparing different τ0 values is a good consistency check
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HISQ 2+1+1
Quantify the cut-off dependence: define 2 scales

t2〈E(t)〉|t=t0 = 0.3, t2〈E(t)〉|t=t1 = 0.35

and compare
√

t0/t1 vs a2/t0 for ms/ml = 5, 10, 27

without t-shift
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The coarsest a ≈ 0.15fm set is
(probably) not in the O(a2)
scaling regime!
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HISQ 2+1+1

There is nothing special about t0 or t1:
g̃2

GF vs t/t0 should be independent of the lattice spacing if there
are no cut-off effects 6

τ0 = 0.0
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A: a ≈ 0.15fm; B: a ≈ 0.12fm; C: a ≈ 0.06fm; D: a ≈ 0.06fm;

6Assuming t is large to avoid gradient flow integration artifacts but small
enough to minimize finite volume effects
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HISQ 2+1+1
How robust is τopt? Compare t0 and r1:

τ0 = 0.0
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Just like before:
I without t-shift improvement lattice artifacts mask that the

coarsest set is not in the O(a2) scaling regime
I With t-shift the lattice scale is predicted better than 1%

( τopt is predicted using t0/t1)
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4 + 8 FLAVOR RUNNING COUPLING

The energy dependence of the running coupling with
4 chiral (ml = 0) and 8 heavy flavors:

g̃2 GF
(µ

;m
h)

PRELIMINARY

interpolates between 12 flavors (conformal) and 4 flavors
(chirally broken) : observe the walking!
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STEP SCALING: Nf = 12

g2
GF(L) versus β bare coupling shows crossings

( g2
GF(L) is independent of the scale)

- does that imply an IRFP?
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Only if the crossings
survive the
continuum limit!
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Nf = 12

Zoom in:

5.8 5.9 6.0 6.1 6.2 6.3 6.4

β

4.2

4.4

4.6

4.8

5.0

5.2

g
2 c

(L
)

364

324

244

184

164

124
Only if the crossings
survive the
continuum limit!

This is special: other published step scaling function studies of
Nf = 12 do not see crossings, they identify an IRFP by
extrapolating from the weak coupling side.
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Nf = 12

Take the continuum limit of the crossings:
g2

GF(L) = g2
GF(sL) =⇒ g2

?(L; s) = g2
GF(L)
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0 1/1821/162 1/122

g2 ∗(
L)

(a/L)2

c=0.2, s=2

τ0 = 0.0
τ0 = 0.02
τ0 = 0.04
τ0 = 0.06

c = 0.2, s = 2

optimization is
essential,
τopt ≈ 0.04
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Nf = 12

Combine s = 4/3, 3/2 and 2 with common τ0 = 0.04

2

3

4

5

6

7

8

9

10

0 1/242 1/1821/162 1/122

g2 ∗(
L)

(a/L)2

c = 0.2, τ = 0.04

s=4/3
s=3/2

s=2

All scale factors predict
g2
?(L) ≈ 6.2 with no

(apparent) dependence
on the lattice spacing

Extrapolating g2
?(L) is more reliable than the β function
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Nf = 12

Results are similar with c = 0.25, 0.3 Larger c gives stronger
g2
?(L) and has increased statistical errors, but t-shift

improvement works the same
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g2 ∗(
L)

(a/L)2

c=0.25, s=2

τ0 = 0.0
τ0 = 0.02
τ0 = 0.04
τ0 = 0.06 c = 0.25, s = 2

τopt ≈ 0.06

Preliminary
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CONCLUSION

t-shift gradient flow improvement is a simple yet powerful
method

I It is easy to implement and can give 1-loop improvement
I In step scaling function studies extrapolation to the

continuum limit is possible even at strong running
coupling

I In scale setting the optimal τ0 parameter can be found by
comparing two configuration sets

I t-shift improved coupling can reveal non O(a2) scaling
violations that are hidden otherwise
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THANK YOU MIKE FOR LEADING THE WAY!
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Nf = 4
Test case: step scaling function with 4 flavor staggered fermions

I Set µ = (cL)−1, c = 0.25
I Define discrete β function with scale change s = 1.5

βlat(g2
GF; s; a) =

g̃2
GF(L; a)− g̃2

GF(sL; a)

log(s2)

Continuum exptrapolation:

0.1

0.2

0.3

0.4

0.5

0.6

0 1/202 1/162 1/122

(g
2 (s

L)
−g

2 (L
))
/l

og
(s

2 )

(a/L)2

g2(L) = 2.2

τ0 = 0.02
τ0 = 0.0
τ0 = −0.02
τ0 = −0.04 Cut-off corrections with

our action are small

All τ0 shifts predict the
same continuum value
→ consistency check!
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Nf = 4

Discrete β function
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g2
c

4 flavors

non-perturbative
2-loop
1-loop

Close agreement with
2-loop perturbative
value

τ0 = −0.02 – 0.0 in the
investigated g2

GF range
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Nf = 8

Expected to be chirally broken but very strongly coupled
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8 flavor

Preliminary

non-perturbative
2-loop
1-loop

Very different from
2-loop perturbative

τ0 = 0.0 – 0.04 with
1x nHYP
τ0 = 0.12 – 0.20 with
2x nHYP
t-shift optimization is
essential
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